-13.205.607p^2=-66.707.837.771,1687p

Simple and best practice solution for -13.205.607p^2=-66.707.837.771,1687p equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -13.205.607p^2=-66.707.837.771,1687p equation:



-13.205.607p^2=-66.707.837.771.1687p
We move all terms to the left:
-13.205.607p^2-(-66.707.837.771.1687p)=0
We add all the numbers together, and all the variables
-13.205.607p^2-(-7.26216861548p)=0
We add all the numbers together, and all the variables
-8.015435p^2-(-7.26216861548p)=0
We get rid of parentheses
-8.015435p^2+7.26216861548p=0
a = -8.015435; b = 7.26216861548; c = 0;
Δ = b2-4ac
Δ = 7.262168615482-4·(-8.015435)·0
Δ = 52.7390929997
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7.26216861548)-\sqrt{52.7390929997}}{2*-8.015435}=\frac{-7.26216861548-\sqrt{52.7390929997}}{-16.03087} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7.26216861548)+\sqrt{52.7390929997}}{2*-8.015435}=\frac{-7.26216861548+\sqrt{52.7390929997}}{-16.03087} $

See similar equations:

| 3(3n+4)=7(4n+8)+3 | | 20+-5y=45 | | 1/2x+3/4-3/4=1/2x+3/4-3/4 | | 5x-1+6x=2x+5-4x | | 4.9t^2-15t+7=0 | | 356n=485+n+35 | | x+(3x+2)=18 | | x+5.5=0.45 | | 12+-3(x+-5)=21 | | 6=3w-4 | | 24=6(-6n-5) | | (y=2)(y-8) | | 4p-3=-9+p | | 5p/2=15/2 | | 2x=3x+50 | | 6x+-4(2x+8)=16 | | -5/2y=-10 | | 2=k+7/3 | | 4p^2=2p | | y/3-10=26 | | R1=r2/r1+r2 | | 4x+3=17x=16 | | 6=-3/4v | | 3x+58=8x+8 | | 13x-11x=10 | | 2z−248=406 | | (n-8)/2=-3 | | 4x^-6+12x^-4=-x | | 4x+3=1716 | | 103=5v+8 | | |7n-5|+11=3 | | 44+26k=642 |

Equations solver categories